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Abstract. In this research paper, the authors have studied the properties of ion-acoustic solitons and
double-layers in a plasma consisting of warm positive and negative ions with different concentration of
masses, charged states and non-thermal electrons using small amplitude approximation. Reductive per-
turbation method is used to derive KdV and m-KdV equations. Existence of ion-acoustic solitons and
double-layer is explored over a wide range of parameter space. The role of non-thermal electrons charac-
terized by finite β is investigated. It is observed that for a particular value of β, there is a transition from
compressive to rarefactive solitons. However, when β is increased beyond a critical value, no double-layers
are obtained. The significance of relative ion masses is also investigated.

PACS. 52.35.-g Waves, oscillations, and instabilities in plasmas and intense beams

1 Introduction

Nonlinear wave structures are beautiful and amazing man-
ifestation of nature, arising out of competition between
properties like nonlinearity, dispersion and dissipation.
They have been paying rich dividends to researchers as
they offer deep physical insight underlying the nonlinear
phenomena. Space environment constitutes a magnificent
laboratory for the investigation of plasma phenomena and
nonlinear wave structures. To quote a few nonlinear wave
structures, we have solitons, shock waves, double-layers
etc. observed both in space and laboratory. In plasmas ion-
acoustic solitons have been focus of most investigations.
However, in the past two decades, the double-layers have
also attracted a great deal of attention because of their
relevance to cosmic applications [1–5]. Furthermore, space
plasmas are of multispecies type and offer a rich source for
studying the double-layers. Their relevance further stems
from the fact that these are considered as the source of
Earth’s aurora. It was also discovered that the acoustic
double-layers also are responsible for auroral electron pre-
cipitation. Moreover, electrostatic double-layers provide a
mechanism for the acceleration of the particles.

To study nonlinear structures, we usually adopt some
form of perturbation method. In small amplitude ap-
proximation, one ends up deriving some form of nonlin-
ear partial differential equations like Korteweg-de-Vries
(KdV) or modified Korteweg-de-Vries (m-KdV) or non-
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linear Schroedinger equations etc. Using the reductive
perturbation technique, ion-acoustic double-layers have
been studied by a number of authors [6–9] in different
plasma systems. In the past few years, there have been
considerable interest in understanding the behaviour of
multispecies plasma consisting of cold or warm positive
and negative ions with usual Boltzmann’s electrons. Ion-
acoustic solitons and double-layers in multispecies plasma
have been recently studied in a number of investiga-
tions [10–19]. However, it has been recently found that
the electron and ion distributions play a crucial role in
characterizing the physics of the wave structures. They
offer considerable increase in richness and variety of wave
motion which can exist in plasma and further significantly
influence the conditions required for the formation of soli-
tons and double-layers. Moreover, it is also known that
electron and ion distributions can be significantly modi-
fied in the presence of large amplitude waves.

With observations of solitary wave structures with
density depression, emphasizing the role of nonther-
mal electrons distribution on characterisation of solitary
wave/solitons were reported [20,24–26]. Some other inves-
tigations have been reported in the study of ion-acoustic
solitons in plasmas with non-Maxwellian electron distribu-
tions [21–23,27–29]. Nonthermal distributions are a com-
mon feature of the auroral zone [30]. Mechanism for the
formation of non-thermal particles distributions in space
plasma is still a central problem. The aim of the present
investigation is to study how the non-thermal electron dis-
tributions influence the solitary wave behaviour as well as
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the physics of ion-acoustic double-layers in a multispecies
plasma consisting of positive ions, negative ions and non-
thermal electrons. The organisation of the present paper
is as follows: in Section 2, we set up basic equations gov-
erning the dynamics of the multispecies plasma. Section 3
is devoted to derive KdV equation. In Section 4, we ob-
tain soliton solution while in Section 5, we derive m-KdV
equation. In Section 6, we obtain double-layer solution
under appropriate conditions and in Section 7, we present
discussion of numerical computation of different plasma
systems. In last section, we have summarized the various
results obtained in the present investigation.

2 Basic equations

We consider a collisionless unmagnetised plasma consist-
ing of non-thermal electron distribution, warm positive
and negative ion species having temperatures T1 and T2

which are divided into two distinct groups. We assume
that low frequency electrostatic waves propagate in the
plasma.

To explain observation made from the Freja satellite,
Cairns et al. [20] assumed a distribution of electrons which
is non-thermal with an excess of energetic particles. The
non-thermal distribution for electrons was later used by a
number of authors in various investigations. The number
density of the electron fluid, with non-thermal electrons is
given by:

ne = (1 − βφ + βφ2)eφ (1)

where

β =
4γ

1 + 3γ
.

Here γ is a parameter determining the number of non-
thermal electrons present in our non-thermal plasma
model [20,26,30]. This is non-Maxwellian distribution
function which contains high energy electrons component.
Such distributions are very common in auroral zone of
ionosphere.

The nonlinear behaviour of the ion-acoustic waves
may be described by the following set of normalized fluid
equations:

∂n1

∂t
+

∂(n1v1)
∂x

= 0 (2)

∂v1

∂t
+ v1

∂v1

∂x
= −1

δ

∂φ

∂x
− σ1

δZ1

1
n1

∂n1

∂x
(3)

∂n2

∂t
+

∂(n2v2)
∂x

= 0 (4)

∂v2

∂t
+ v2

∂v2

∂x
=

εz

δη

∂φ

∂x
− σ2

δηZ1

1
n2

∂n2

∂x
(5)

∂2φ

∂x2
= ne − n1

1 − αεz
+

αεz

1 − αεz
n2 (6)

where

δ =
η + αε2z

η(1 − αεz)
, α =

n
(0)
2

n
(0)
1

, εz =
Z2

Z1
,

η =
m2

m1
, σ1 =

T1

Te
, σ2 =

T2

Te
. (7)

In the above equations n1, v1 and n2, v2 are the densities
and fluid velocities of positive and negative ion species re-
spectively. n

(0)
1 , n

(0)
2 are the equilibrium densities of two

ion components respectively. Further, φ is the electrostatic
potential. η is the mass ratio of the negative ion species
to the positive ion species, α is the equilibrium density
ratio of the negative ion to positive ion species and εz is
the charge multiplicity ratio of the negative ion to pos-
itive ion species. In equations (1–6), velocities (v1, v2),
potential (φ), time (t) and space coordinate (x) have been
normalized with respect to the ion-acoustic speed in the
mixture, Cs, thermal potential Te/e, inverse of ion plasma
frequency in the mixture ω−1

pi , Debye length λD respec-
tively. Ion densities n1 and n2 are normalized with their
corresponding equilibrium values, whereas electron densi-
ties normalized by n(0). In the mixture, the ion-acoustic
speed Cs, the ion plasma frequency ωpi and the Debye
length are respectively given by

Cs =

√
TeδZ1

m1

ωpi =

√
4πn(0)e2Z1δ

m1
(8)

and

λD =

√
Te

4πn(0)e2
. (9)

3 Derivation of KdV equation

To study small but finite amplitude ion-acoustic solitary
waves in our multispecies plasma model, we construct a
weakly nonlinear theory of the ion-acoustic waves which
lead to scaling of the independent variables through the
stretched co-ordinates (ξ) and (τ):

ξ = ε1/2(x − λ0t) (10)

τ = ε3/2t (11)

where ε is a small parameter measuring the weakness of
the dispersion and λ0 is the phase velocity of the wave
to be determined later. Now to strike a balance between
nonlinear and dispersive terms, we expand all depen-
dent quantities in equations (1–6) around the equilibrium
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values in powers of ε in the following form:

n1 = 1 + εn
(1)
1 + ε2n

(2)
1 + ε3n

(3)
1 + ...

n2 = 1 + εn
(1)
2 + ε2n

(2)
2 + ε3n

(3)
2 + ...

v1 = εv
(1)
1 + ε2v

(2)
1 + ε3v

(3)
1 + ...

v2 = εv
(1)
2 + ε2v

(2)
2 + ε3v

(3)
2 + ...

φ = εφ(1) + ε2φ(2) + ε3φ(3) + ... (12)

Substituting the expansion (12) into equations (1–6) and
using equations (10, 11), equating terms with the same
powers of ε we obtain a set of equations for ascending
orders in ε as follows

(1 − β)φ(1) − n
(1)
1

(1 − αεz)
+

αεz

1 − αεz
n

(1)
2 = 0 (13)

λ0n
(1)
1 = v

(1)
1 (14)

λ0n
(1)
2 = v

(1)
2 (15)

λ0v
(1)
1 =

φ(1)2

δ
+

σ1

δZ1
n

(1)
1 (16)

λ0v
(1)
2 =

σ2

ηδZ1
n

(1)
2 − εz

ηδ
φ(1) (17)

(1 − β)φ(2) +
φ(1)2

2
− n

(2)
1

1 − αεz
+

αεz

1 − αεz
n

(2)
2 =

∂2φ(1)

∂ξ2
.

(18)

Equations (14) to (17) are used to get the following first
order quantities:

n
(1)
1 =

Z1

δZ1λ2
0 − σ1

φ(1) (19)

n
(1)
2 = − Z2

δηZ1λ2
0 − σ2

φ(1) (20)

v
(1)
1 =

Z1λ0

δZ1λ2
0 − σ1

φ(1) (21)

v
(1)
2 =

Z2λ0

δηZ1λ2
0 − σ2

φ(1). (22)

Similarly from the equations of continuity and equations
of motion for positive and negative ions, we obtain the
following equations to the next higher order of ε:

− λ0
∂n

(2)
1

∂ξ
+

∂n
(1)
1

∂τ
+

∂v
(2)
1
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+

∂(n(1)
1 v

(1)
1 )

∂ξ
= 0 (23)
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2
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2
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(2)
2
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2 v

(1)
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∂ξ
= 0 (24)
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(2)
1

∂ξ
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(1)
1
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(1)
1
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(1)
1
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=

− 1
δ

∂φ(2)
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δZ1
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(2)
1

∂ξ
+

σ1

δZ1
n

(1)
1

∂n
(1)
1

∂ξ
(25)

− λ0
∂v

(2)
2

∂ξ
+

∂v
(1)
2

∂τ
+ v

(1)
2

∂v
(1)
2

∂ξ
=

εz

ηδ

∂φ(1)

∂ξ
− σ2

ηδZ1

∂n
(2)
2

∂ξ
+

σ2

ηδZ1
n

(1)
2

∂n
(1)
2

∂ξ
. (26)

On using equations (19) and (20) into equation (13), we
get the following relation:

Z1

(1 − αεz)

[
1

(δZ1λ2
0 − σ1)

+
αε2z

(ηδZ1λ2
0 − σ2)

]
= 1 − β.

(27)
It may be noted that equation (27) is quadratic in λ2

0,
therefore the inclusion of a finite ion temperature gives
rise to two ion-acoustic modes propagating with different
phase velocities. Apparently the modes are further signif-
icantly modified by the appearance of non-thermal elec-
tron distribution parameter β. The phase velocities of two
modes is given by the following expression:

λ2
01 =

(
1

2(1 − β)
+

σ2 + ησ1

2δηZ1

)

−
√(

1
2(1−β)

+
σ2+ησ1

2δηZ1

)2

− 1
ηδ2Z1

(
σ1σ2

Z1
+

σ2+σ1αε2z
1−αεz

)

(28)

for slow ion-acoustic mode and

λ2
02 =

(
1

2(1 − β)
+

σ2 + ησ1

2δηZ1

)

+

√(
1

2(1−β)
+

σ2 + ησ1

2δηZ1

)2

− 1
ηδ2Z1

(
σ1σ2

Z1
+

σ2+σ1αε2z
1−αεz

)

(29)

for fast ion-acoustic mode.
Apparently the phase velocities are the function of sev-

eral parameters including density parameter (α), mass ra-
tio parameters (η) and nonthermalcity (β) and ion tem-
peratures σ1, σ2. Thus, the system supports two types of
ion-acoustic modes which propagate with different phase
velocities given by equations (28) and (29). The mode with
smaller phase velocity is slow ion-acoustic mode whereas
the mode with larger phase velocity is known as the
fast ion-acoustic mode. Consequently, the system supports
two types of ion-acoustic solitons, viz, slow ion-acoustic
solitons and fast ion-acoustic solitons. Earlier investiga-
tions [19] reported two cases in which system does not
support slow ion-acoustic mode viz.

(a) when both species are cold i.e., σ1 = σ2 = 0, substitut-
ing in equation (28) implies that λ2

01 = 0, which clearly
shows that slow ion-acoustic mode does not exist and
fast acoustic mode exists i.e., equation (29) reduces to
usual ion-acoustic mode;

(b) when σ1 = σ2, and η = 1, however, introduction of
finite nonthermal electrons leads to the existence of
slow ion-acoustic mode. Introduction of finite ion tem-
peratures, when both ions have different temperatures,
lead to the existence of both slow and fast ion-acoustic
modes. As earlier reported, we have two soliton so-
lutions. For the actual existence of slow ion-acoustic
soliton, the phase velocity of slow ion-acoustic mode
must be greater than the thermal velocity of the ions.
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In such case, Landau damping will be small and we
expect that slow ion-acoustic mode will not Landau
damp. When phase velocity of a slow acoustic mode
is comparable with thermal velocity of ions, then slow
mode disappears. In the present investigation, for the
chosen set of parameters and finite β, it is observed
that phase velocity is greater than ion thermal veloci-
ties for both modes.

On differentiating equation (18), we get second order
quantities which are eliminated in terms of first order
quantities using equations (23–26). After a long algebraic
but straightforward manipulations, we derive the follow-
ing KdV equation:

∂φ(1)

∂τ
+ Cφ(1) ∂φ(1)

∂ξ
+ D

∂3φ(1)

∂φ3
= 0 (30)

where C = AB and D = A/2. Here A and B are given by

A =
1 − αεz

δλ0

[
Z2

1

(δZ1λ2
0 − σ1)2

+
αηZ2

2

(ηδZ1λ2
0 − σ2)2

]−1

(31)

B =
Z2

1

2(1 − αεz)

[
(3δZ1λ

2
0 − σ1)

(δZ1λ2
0 − σ1)3

−αε3z
(3ηδZ1λ

2
0 − σ2)

(ηδZ1λ2
0 − σ2)3

]
− 1

2
. (32)

Coefficient C being a function of a number of parame-
ters, is a measure of nonlinearity, while coefficient D is
the measure of dispersion. Further, non-thermal parame-
ter appears in C and D through equations (28) and (29)
and both these coefficients vary over a wide range of pa-
rameter space. It is possible to strike a delicate balance
between nonlinearity and dispersive property, leading to
formation of KdV soliton.

4 Soliton solution

The steady state solution of KdV equation (30) is obtained
by transforming the independent variables ξ and τ as

χ = ξ − uτ (33)

where u is a normalized constant velocity. Using equa-
tion (33) into (30) and integrating w.r.t. χ, we get

1
2

(
dφ

dχ

)2

+ V (φ) = 0 (34)

where φ(1) is replaced by φ for the sake of convenience and
V (φ) is the Sagdeev potential given by

V (φ) =
1
D

(
C

6
φ3 − u

2
φ2

)
. (35)

It may be noted that in deriving equation (35), we have
used the following boundary conditions:

χ → ±∞,

(
φ,

dφ

dχ
,

d2φ

dχ2

)
→ 0. (36)

Fig. 1. Plot of nonlinearity coefficient C vs. α for different
values of β with η = 1, σ1 = 0.1, σ2 = 0.01, and Z1 = Z2 = 1.

However, for the soliton solution, the Sagdeev potential
V(φ) should be negative between φ = 0 and φ =φm, where
φm is some maximum or minimum value for the compres-
sive and rarefactive solitons respectively. The boundary
conditions on the Sagdeev potential should be satisfied as:

V (φ) = 0 at φ = 0 and φ = φm

V ′(φ) = 0 at φ = 0

V ′(φ) > 0 at φ = φm for compressive soliton,

and V ′(φ) < 0 at φ = φm for rarefactive soliton.
(37)

The soliton solution for equation (34) is given by

φ = φmsech2d−1(ξ − uτ) (38)

where the amplitude φm and width d are given by

φm =
3u

C
(39)

and

d =

√
2A

u
. (40)

5 Derivation of m-KdV equation

There is singularity, when coefficient of nonlinear term of
KdV equation is zero as shown in Figure 1. In this case,
KdV soliton is not valid solution and we derive m-KdV
equation. For this purpose, we include higher order effects,
which are important in the study of double-layers. We
introduce the following stretching coordinates (ξ) and (τ);

ξ = ε(x − λ0t) (41)

τ = ε3t. (42)

On substituting the expansion (41) and (42) into equa-
tions (2–6), using equation (12), we obtain earlier results.
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We therefore seek next order terms i.e. O(ε3) of equa-
tions (2–5) and using the first order solutions, we get the
following second order solutions

n
(2)
1 =

Z1

(δZ1λ2
0 − σ1)

[
Z1

2
(3δZ1λ

2
0 − σ1)

(δZ1λ2
0 − σ1)2

φ(1)2 + φ(2)

]

(43)

n
(2)
2 =

Z2

(δηZ1λ2
0 − σ2)

[
Z2

2
(3δηZ1λ

2
0 − σ2)

(δηZ1λ2
0 − σ2)2

φ(1)2 − φ(2)

]

(44)

v
(2)
1 =

Z1

2δλ0

1
(δZ1λ2

0 − σ1)

[
1 + σ1

(3δZ1λ
2
0 − σ1)

(δZ1λ2
0 − σ1)2

]
φ(1)2

+
1

δλ0

[
1 +

σ1

(δZ1λ2
0 − σ1)

]
φ(2) (45)

v
(2)
2 =

εz

2δηλ0

Z2

(δηZ1λ2
0−σ2)

[
1+ σ2

(3δηZ1λ
2
0−σ2)

(δηZ1λ2
0 − σ2)2

]
φ(1)2

− εz

δηλ0

[
1 +

σ2

(δηZ1λ2
0 − σ2)

]
φ(2). (46)

Poisson equation at O(ε2) gives

Qφ(1)2 = 0 (47)

where

Q =
Z2

1

2(1 − αεz)

[
(3δZ1λ

2
0 − σ1)

(δZ1λ2
0 − σ1)3

−αε3z
(3ηδZ1λ

2
0 − σ2)

(ηδZ1λ2
0 − σ2)3

]
− 1

2
. (48)

Since φ(1) �= 0, therefore “Q” should be at least of the
order of ε and now “Qφ(1)2” becomes of the order of ε3;
so it should be included in the next order of Poisson’s
equation. The next higher order, i.e. O(ε3) of the Poisson
equation on using first and second order solutions gives
the following m-KdV equation

P
∂φ(1)

∂τ
+ Q

∂φ(1)2

∂ξ
+ R

∂φ(1)3

∂ξ
+

∂3φ(1)

∂ξ3
= 0 (49)

where

P =
2δZ2

1λ0

(1 − αεz)

[
1

(δZ1λ2
0 − σ1)2

+ αε2z
η

(ηZ1λ2
0 − σ2)2

]

(50)
and

R =
1

(1 − αεz)
Z3

1

(δZ1λ2
0 − σ1)3

×
[
1 +

(3δZ1λ
2
0 − σ1)(δZ1λ

2
0 + σ1)

2(δZ1λ2
0 − σ1)2

+
σ1

3(δZ1λ2
0 − σ1)

]

+
1

(1 − αεz)
αεzZ

3
2

(ηδZ1λ2
0 − σ2)3

×
[
1 +

(3ηδZ1λ
2
0 − σ2)(ηδZ1λ

2
0 + σ2)

2(ηδZ1λ2
0 − σ2)2

+
σ2

3(ηδZ1λ2
0 − σ2)

]

− 1 + 3β

6
. (51)

6 Double-layer solution

In this section, we present double-layer solution associated
with the mixed m-KdV equation (49). For this purpose,
we introduce a variable ζ = ξ − uτ in a stationary frame,
where u is a constant velocity. Equation (49) now becomes:

1
2

(
dφ

dζ

)2

+ V (φ) = 0 (52)

where V (φ) is the Sagdeev potential given by

V (φ) = −1
2
Puφ2 +

1
3
Qφ3 +

1
4
Rφ4. (53)

Here while deriving equation (52), we have used the
boundary conditions that

φ → 0,
dφ

dζ
,

d2φ

dζ2
→ 0 as |ζ| → ∞.

Further, equation (52) with equation (53) can be con-
sidered as an equation of motion of a particle of unit
mass under the action of the potential function V (φ). It
may also be imagined as an equation of anharmonic os-
cillator provided that we interpret ζ and φ as time and
space coordinates respectively. For double-layer solution,
the Sagdeev potential should be negative between φ = 0
and φm, where φm is some extremum value of potential.
Additional boundary conditions that V (φ) should satisfy
for double-layer solution are follows:

V (φ) = 0 at φ = 0 and φ = φm,

V ′(φ) = 0 at φ = 0 and φ = φm,

V ′′(φ) < 0 at φ = 0 and φ = φm. (54)

Applying the first two boundary conditions of equa-
tion (54) in equation (53) we obtain

u =
(−R

2P

)
φ2

m (55)

and
φm = −2Q

3R
. (56)

Using equations (55) and (56) in equation (53), we get

V (φ) =
Rφ2

4
(φm − φ)2. (57)

The double-layer solution of equation (49) is given by

φ =
φm

2

[
1 − tanh

√
−R

8
φm(ξ − uτ)

]
. (58)

It may be noted from the above equation that for the exis-
tence of a double-layer, the coefficient of cubic non linear
term of the m-KdV equation i.e., R should be negative.
It may also be noted from equation (56) that the nature
of the double-layer i.e., whether the system will support
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Fig. 2. Variation of slow ion-acoustic soliton amplitude φm

with α for different values of β with the following set of pa-
rameters: η = 1, σ1 = 0.1, σ2 = 0.0, Z1 = Z2 = 1, and
u = 0.01.

Fig. 3. Variation of slow ion-acoustic soliton amplitude φm

with α for different values of β with the following set of pa-
rameters: η = 1, σ1 = 0.0, σ2 = 0.1, Z1 = Z2 = 1, and
u = 0.01.

a compressive or rarefactive double-layer, depends on the
sign of Q. If Q is positive, a compressive double-layer exists
whereas for negative Q, a rarefactive double-layer exists.
The thickness d of the double-layer is given by

d =
4
√

−2
R

|φm| . (59)

7 Discussion

The (H+, O−
2 ) and (H+, H−) plasmas occur in the D-

region of the ionosphere. For these type of plasmas, we
have numerically evaluated φm as a function of α for dif-
ferent values of β and results for slow ion-acoustics modes
are shown in Figures 2 and 3. For slow ion-acoustic mode,
relative temperature of the two species and finite β are
relevant parameters. It is observed that when the temper-
ature of positive ion is finite but the negative is cold, there
is only one mode of rarefactive type and is independent
of β. However, when the temperature of the negative ion
is finite but positive ions are cold, then for particular den-
sity ratio α, the maximum amplitude of compressive slow
ion-acoustic soliton decreases with increase in β. For the
fast acoustic mode relative density as well as finite β are
relevant parameters, we have computed φm as function

Fig. 4. Variation of fast ion-acoustic soliton amplitude φm

with α for different values of β with the following set of pa-
rameters: η = 1, σ1 = 0.01, σ2 = 0.05, Z1 = Z2 = 1, and
u = 0.01.

Fig. 5. Variation of fast ion-acoustic soliton amplitude φm

with α for different values of β with the following set of pa-
rameters: η = 1, σ1 = 0.01, σ2 = 0.0, Z1 = Z2 = 1, and
u = 0.01.

Fig. 6. 3D plot of slow ion-acoustic soliton for φ vs. ξ and τ
with the following set of parameters: α = 0.2, β = 0.1, η = 1,
σ1 = 0.1, σ2 = 0.01, Z1 = Z2 = 1, and u = 0.02.

of α for fast ion-acoustic mode for different values of β
and plotted graphs as shown in Figures 4 and 5. We find
that both compressive as well as rarefactive solitons exist.
With the increase in nonthermalcity, there is transition
with β and maximum amplitude occurs for low relative
density concentration. This feature is succinctly displayed
in Figures 4 and 5.

In Figures 6 and 7, we show a three dimensional profile
of solitons, where φ as function of ξ and η is plotted for



T.S. Gill et al.: Ion-acoustic solitons and double-layers in a plasma 97

Fig. 7. 3D plot of slow ion-acoustic soliton for φ vs. ξ and τ
with the following set of parameters: α = 0.2, β = 0.1, η = 1,
σ1 = 0.1, σ2 = 0.01, Z1 = Z2 = 1, and u = 0.03.

Fig. 8. 3D plot of slow ion-acoustic soliton for φm vs. α and
β with the following set of parameters: η = 1, σ1 = 0.1, σ2 =
0.01, Z1 = Z2 = 1, and u = 0.01.

two values of u. It is observed that with the increase of u
the maximum amplitude increases.

3D profile of KdV slow and fast modes are shown in
Figures 8 and 9, where φm as a function of α and β are
displayed. Similarly 3D portrait of double-layer solution
is shown in Figure 10.

For (H+, H−), we have performed numerical computa-
tion of V (φ) vs. φ for various ranges of parameters. The re-
sults are shown in the form of graphs. In Figures 11 and 12,
where we have taken density ratio parameter α = 0.2 and
α = 0.4, while the temperatures σ1 = 0.1 and σ2 = 0.01
are same for both of these figures. Other parameters are
as follows: η = 1 and u = 0.01.

Here, we observe the effect of non-thermal electrons in
characterization of solitons. In the absence of non-thermal
electrons (β = 0), only compressive solitons are obtained.
However, when β is increased to β = 0.1, amplitude of
compressive solitons and depth of potential are increased.
But with further increase of β, we obtain a transition in
which only rarefactive solitons are observed which disap-
peared on further increasing β. To observe this transition,

Fig. 9. 3D plot of fast ion-acoustic soliton for φm vs. α and
β with the following set of parameters: η = 1, σ1 = 0.1, σ2 =
0.01, Z1 = Z2 = 1, and u = 0.01.

Fig. 10. 3D plot of fast ion-acoustic double-layer for φm vs. α
and β with η = 1, σ1 = 0.1, σ2 = 0.01 and Z1 = Z2 = 1.

Fig. 11. Variation of Sagdeev potential of solitons V (φ) with
φ for different values of β with the following set of parameters:
α = 0.2, η = 1, σ1 = 0.1, σ2 = 0.01, Z1 = Z2 = 1, u = 0.01.
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Fig. 12. Variation of Sagdeev potential of solitons V (φ) with
φ for different values of β with the following set of parameters:
α = 0.4, η = 1, σ1 = 0.1, σ2 = 0.01, Z1 = Z2 = 1, u = 0.01.

Fig. 13. Variation of Sagdeev potential of solitons V (φ) with
φ for different values of β with the following set of parameters:
α = 0.2, η = 0.476, σ1 = 0.1, σ2 = 0.01, Z1 = Z2 = 1,
u = 0.01.

we have numerically calculated coefficient of nonlinear
term as a function of α for different values of nonther-
mal parameter β and the results are shown in the form of
graphs in Figure 1. The curve for β = 0.5 clearly repre-
sents the transition for chosen set of parameters. In case of
α = 0.4, we observe only rarefactive solitons as depicted
in Figure 12. In this case, the maximum amplitude and
depth of well decrease with the increase of β. Thus, the
increase of density ratio or density of negative ions, leads
to the formation of rarefactive solitons.

The (Ar+, F−) plasma has been used in experimental
studies of ion-acoustic wave propagation in a number of
investigations [31–33]. This plasma composition has been
used in the experimental investigation of strong double-
layers [34]. Here we have also done numerical computation
of V (φ) vs. φ for (Ar+F−) plasma and taken the follow-
ing realistic parameters: α = 0.2, σ1 = 0.1, σ2 = 0.01,
u = 0.01 and β = 0, 0.1, 0.2, 0.5. Results are exhibited in
the form of graphs as shown in Figure 13. Only rarefac-
tive solitons are obtained for all the values of non-thermal
parameters from β = 0 to β = 0.5. Further, the peak am-

Fig. 14. Variation of Sagdeev potential of solitons V (φ) with
φ for different values of β with the following set of parameters:
α = 0.2, η = 32, σ1 = 0.1, σ2 = 0.01, Z1 = Z2 = 1, u = 0.01.

Fig. 15. Variation of Sagdeev potential ion-acoustic double-
layers V (φ) with φ for different values of (σ1, σ2) with the
following set of parameters: α = 0.65, η = 1.9, β = 0, Z1 =
Z2 = 1.

plitude and the depth of potential decrease with increase
in the value of β. This behaviour compares well with that
obtained for (H+, H−) plasma in Figure 12. Maximum
peak amplitude is obtained in the absence of non-thermal
electrons. Thus, the presence of non-thermal electrons re-
stricts the range of parameter space for obtaining solitons.
Further, the mass ratio and nonthermalcity play crucial
role in characterising the soliton. From Figures 11 and 13,
it is clear that with decrease of mass ratio, only rarefac-
tive solitons are observed. Further increase of the density
ratio results in compressive soliton.

Soliton behaviour is observed in (H+, O−
2 ) plasmas and

shown in Figure 14, in which we have plotted V (φ) vs. φ
for various values of β and for σ1 = 0.1, σ2 = 0.01, while
α = 0.2. For low values of β, compressive solitons are
observed whereas higher β = 0.5 leads to appearance of
rarefactive solitons. On the other hand, increase of mass
ratio leads to appearance of compressive solitons and non-
thermal parameters clearly play an important role. This
is highlighted in Figure 14.
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Fig. 16. Variation of Sagdeev potential ion-acoustic double-
layers V (φ) with φ for different values of (σ1, σ2) with the
following set of parameters: α = 0.65, η = 1.9, β = 0.5, Z1 =
Z2 = 1.

Fig. 17. Variation of width |d| of ion-acoustic double-layers
with density ratio α for different values of (σ1, σ2) with the
following set of parameters: η = 0.476, β = 0.2, Z1 = Z2 = 1.

For studying double-layer solution, we plot V (φ) as a
function of φ for α = 0.65, β = 0 and for four differ-
ent values of σ1 and σ2. Different double-layer solutions
are obtained as shown in Figure 15 for (Ar+, SF−

6 ). How-
ever as we introduce the finite β, contributions of σ1 and
σ2 do not play significant role in characterizing different
double-layers as all the graphs converge to a single curve
indicating only compressive double-layers for (Ar+, SF−

6 )
as depicted in Figure 16. It is clear from the expression of
phase velocity of fast and slow modes, the increase in β
leads to dominance of first term in the parenthesis of the
phase velocity over the second term which is a function of
σ1 and σ2. Density ratio plays a significant role in describ-
ing the dynamics of double-layers. To study this effect, we
plot φm and width as a function of α with other values
of parameters are σ1 = 0.01, σ2 = 0.001 and β = 0.2.
The results are shown in Figures 17 and 18. In the case of
(Ar+, F−) plasma, the results are very similar to case of
β = 0 [28]. However, no double-layers are obtained as we
further increase β.

Fig. 18. Variation of amplitude |φm| of ion-acoustic double-
layers with density ratio α for different values of (σ1, σ2) with
the following set of parameters: η = 0.476, β = 0.2, Z1 =
Z2 = 1.

Fig. 19. 3D plot of fast ion-acoustic soliton for φm vs. α and
β with η = 1, σ1 = 0.1, σ2 = 0.01, Z1 = Z2 = 1, and u = 0.01.

To enrich the presentation, we have displayed 3D pro-
file in Figure 19 where we have plotted φm as a function
of α and β.

8 Conclusions

In this paper, we have studied the effect of non-thermal
electrons on solitary waves and double-layers in a mul-
tispecies plasma consisting positive and negative ions
with finite temperatures. The results are summarized as
follows:

(i) for slow ion-acoustic mode, relative temperature of
two ion species and finite β are relevant parameters.
When σ1 > σ2, we obtain compressive as well as rar-
efactive solitons for different β. In case of (H+, H−)
plasma, and in the absence of non-thermal electrons
(β = 0), only compressive solitons are obtained.
As β is increased to β = 0.5, we obtain a transi-
tion in which rarefactive solitons are obtained which
disappear with further increase in β. For the fast
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ion-acoustic mode, both compressive as well as rar-
efactive ion-acoustic solitons exist. With increase in
nonthermalcity, there is transition with β and maxi-
mum occurs for low relative density concentration;

(ii) for (Ar+, F−) and (H+, H−) plasmas, where µ ≤ 1,
we obtain rarefactive solitons. Finite β restricts the
range of parameter space for obtaining solitons. Max-
imum peak amplitude and depth of the potential
decrease with increase in the value of β. Maximum
amplitude is obtained in the absence of nonthermal
electrons;

(iii) for (H+, O−
2 ) plasma, behaviour is similar to that ob-

served for (H+, H−). The role of mass ratio and finite
β is very crucial in this case. For low value of β and
increase mass ratio in (H+, O−

2 ) plasma system, only
compressive solitons are obtained. However, when β
is increased to 0.5, the rarefactive solitons are ob-
served. However rarefactive solitons occur at higher
β when mass ratio is increased;

(iv) for β = 0, different double-layers exist. Introducing
finite β leads to appearance of a single double-layer
solution;

(v) relative density (α) plays an important role when β =
0. However, as β is increased, no double-layer exists.
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